Licking and Cedar Run TMDL Study

Second Public Meeting October 23, 2003

Essential Steps in TMDL Process

1. Source Assessment

Identify and quantify all existing sources of pollutant.

2. Computer Modeling

 Develop model to explain and predict the response of the waterbody to different levels of pollutant loads.

3. Load Allocation

 Determine level of pollutant load that allows the waterbody to meet water quality standards and allocate that load to sources.

Basin Setup

Modeling Simplified

- Pervious Land Block (PERLND)
 - Simulates all pervious land activities and computes runoff and pollutants loads.
- Impervious Land Block (IMPLND)
 - Simulates all impervious land activities and computes runoff and pollutant loads.
- Stream and River Block
 - Links the PERLND's and IMPLND's and routes streamflow in channels through a network of river reaches

Sub-Basin Delineation

Sub-basin	Acres
1	13,263
2	3,527
3	10,858
4	6,317
5	3,113
6	3,610
7	3,284
8	40
9	1,402
10	10,770
11	31
12	17
13	3,108
14	25,528
15	3,179
16	20,783
17	8,351
18	6,509
19	1,198
20	57

Land Use Inputs

- Pervious Land Block
 - Simulates all pervious land activities and computes runoff and pollutants loads.
 - Forest
 - Agricultural Lands
- Impervious Land Block
 - Simulates all impervious land activities and computes runoff and pollutant loads.
 - Developed Lands

Model Land Use Classes

Land Use	Perviousness (%)
Forest	100
Agricultural Tillage	100
Pasture	100
Low Density Residential	88
Medium Density Residential	62
Townhouse	35
Commercial	15
Industrial	28
Institutional	50
Misc. Urban Features	50

Land Use Distribution

		Pervious Land			Impervious Land		
Segment		Forest	(Acres) Cropland	Pasture	Developed Land	(Acres) Developed Land	Total
30	1	5,834	2,872	2,094	1,808	656	13,264
	2	1,397	911	530	495	194	3,527
	3	4,219	3,061	1,807	1,007	766	10,858
	4	4,724	475	431	351	337	6,318
	5	2,863	9	0	130	112	3,114
	6	1,027	1,519	646	223	181	3,595
	7	922	1,182	1,006	94	80	3,284
	8	38	0	2	0	0	40
	9	574	507	162	85	74	1,402
	10	4,819	2,632	2,146	670	504	10,771
	11	23	0	0	4	4	31
	12	17	0	0	0	0	17
	13	2,498	15	0	298	298	3,108
	14	12,519	9,362	1,227	1,497	923	25,528
	15	2,431	432	23	158	135	3,179
	16	8,914	2,161	3,738	3,828	2,143	20,784
	17	4,133	1,726	1,223	770	500	8,351
	18	2,438	2,646	564	508	353	6,509
	19	528	242	191	113	125	1,198
	20	1	0	0	3	3	7
Tot		59,918	29,752	15,789	12,042	7,385	124,885

Meteorology

Model Inputs

 Hourly Precipitation 	Observed
--	----------

- Hourly Air Temperature
 Observed
- Hourly WindObserved
- Hourly Dew Point Temperature Observed
- Hourly Solar Radiation
 Calculated
- Hourly Evaporation Calculated
- Hourly Evapotranspiration Calculated

Meteorology (cont.)

- National Weather Service Stations
 - Warrenton
 - Daily Measurements Only
 - Effectively Closed After 2000
 - Dulles Airport
 - Predominantly Daily Measurements
 - Cloud Cover measurements ended 1996
 - National Airport
 - Hourly Measurements
 - Cloud Cover measurements ended 1996

Meteorology (cont.)

- Sterling Surface Irradiance Study
 - Direct solar radiation measurement study at Sterling NWS site
 - 1995 to Present
- Occoquan Monitoring Laboratory
 - Sub-hourly measurements in Manassas
 - Cedar Run Precipitation Gauge established 2001

Hydrology Calibration and Verification

Hydrology Calibration

- Idea is to develop a simulated average daily flow similar to that of the observed flow at the OWML Cedar Run gage utilizing meteorological data and land use data
- Calibration Period: 1991-1995 (5 Years)
- Verification Period: 1997-2002 (6 Years)

Calibration "knobs"

Parameter	Definition	Units	Typical Range of Parameter Value	Initial Parameter Estimate	Calibrated Parameter Value
FOREST	Fractional forest cover		0.0 – 0.95	0	0
LZSN	Lower zone nominal soil moisture storage	in	2.0 – 15.0	3 – 12	6
INFILT	Index to infiltration capacity	in/hr-	0.001 - 0.50	0.01 - 0.3	.15
LSUR	Length of overland flow	ft	100 – 700	100 – 500	325 –350
SLSUR	Slope of overland flowplane		0.001 - 0.30	0.01 – 0. 3	0.15 – 0.2
KVARY	Groundwater recession variable	l/in	0.0 - 5.0	0	0
AGWRC	Base groundwater recession	l/day	0.85 – 0.999	0.05 - 0.99	0.99
PETMAX	Temp below which ET is reduced	degF	32.0 – 48.0	40	40
PETMIN	Temp below which ET is set to zero	degF	30.0 – 40.0	35	35
INFEXP	Exponent in infiltration equation		1.0 – 3.0	2	2
INFILD	Ratio of max/mean infiltration capacitites		1.0 – 3.0	2	2
DEEPFR	Fraction of GW inflow to deep recharge		0.0 – 0.50	0	0.8
BASETP	Fraction of remain ET from baseflow		0.0 – 0.20	0	0.1
AGWETP	Fraction of remain ET from active GW		0.0 – 0.20	0	0
CEPSC	Interception storage capacity	in	0.01 - 0.40	0.05 - 0.20	0.1
UZSN	Upper zonenominal soil moisture storage	in	0.05 – 2.0	0. 5 – 1.5	0.5
NSUR	Manning's (roughness)		0.10 - 0.50	0.1 – 0.5	0.2
INTFW	Interflow/surface runoff partition parameter		1.0 - 10.0	0.5 – 10	2
IRC	Interflow recession parameter	l/day	0.30 - 0.85	0.1 – 1	0.8
LZETP	Lower zone ET parameter		0.1 – 0.9	0.1 - 0.8	0.5
RETSC	Retention/interception storage capacity	in	0.0 - 1.0	0.001 - 1	0.01 – 0.05 ₁₅
KS	Weight factor for hydraulic routing		0.0 – 0.9	0.5	0.5

Land Simulation

Calibration Summary

	Gaged Flows	Modeled Flows
1991	34,423	31,612= Total volume for 1991
1992	56,326	49,617= Total volume for 1992
1993	69,990	68,870= Total volume for 1993
1994	66,560	70,658= Total volume for 1994
1995	34,301	34,269= Total volume for 1995
	261,600	255,026= Total volume for entire simulation
	-8.2%=	Volume balance error for 1991
	-11.9%=	Volume balance error for 1992
	-1.6%=	Volume balance error for 1993
	6.2%=	Volume balance error for 1994
	-0.1%=	Volume balance error for 1995
	-2.5%=	Volume balance error for entire simulation period

	<u>Simulated</u>	<u>Observed</u>
Total simulation Runoff	51.9 inches	55.9 inches
Total of highest 10% flows	27.5 inches	30.9 inches
Total of lowest 50% flows	4.2 inches	4.4 inches
Total storm volume	16.97 inches	16.16 inches
Average of storm peaks	1,297 cfs	1,223 cfs
Baseflow recession rate	0.96	0.90
Summer flow volume	11.55 inches	7.48 inches
Winter flow volume	16.22 inches	22.04 inches
Summer storm volume	6.25 inches	4.57 inches
	Current	<u>Criteria</u>
Error in total volume	-7.1	±10.0
Error in 50% lowest flows	-4.6	±10.0
Error in 10% highest flows	-11.2	±15.0
Error in storm peaks	6.1	±15.0
Seasonal volume error	80.9	±10.0
Summer storm volume error	31.8	±15.0

Model Verification

Verification Period is used to "verify" calibration parameter settings over different time period.

A slightly longer verification period (6 years) was chosen to verify the calibration

-1997 through 2002

Verification Summary

	Gaged Flows	Modeled Flows
1997	36,708	41,306= Total volume for 1997
1998	77,147	92,848= Total volume for 1998
1999	25,432	36,835= Total volume for 1999
2000	28,293	33,061= Total volume for 2000
2001	24,903	25,825= Total volume for 2001
2002	18,377	17,711= Total volume for 2002
	210,860	247,587= Total volume for entire simulation
	12.5%=	= Volume balance error for 1997
	20.4%=	= Volume balance error for 1998
	44.8%	= Volume balance error for 1998
	16.9%=	= Volume balance error for 2000
	3.7%=	= Volume balance error for 2001
	-3.6%=	= Volume balance error for 2002
	17.4%:	= Volume balance error for entire simulation period

Bacteria Source Assessments

Bacteria Source Assessments

- Determine human and animal populations by subwatershed
- Estimate bacteria produced per animal per day
- Calculate how much of the bacteria is deposited directly in streams and how much is deposited on the land surface

Sources of Bacteria

- Human Sources
 - Failing Septic Systems
 - Straight Pipes
 - Point Sources
 - Sewage Treatment Plants
 - POTW
 - Private Residences
 - Biosolids Applications

Sources of Bacteria (cont.)

- Agricultural and Domestic Sources
 - Beef Cattle
 - Dairy Cattle
 - Horses and Ponies
 - Sheep and Lambs
 - Hogs and Pigs
 - Poultry
 - Goats
 - Dogs and Cats

Sources of Bacteria (cont.)

- Wildlife Sources
 - Deer
 - Raccoons
 - Muskrats
 - Beavers
 - Turkeys
 - Geese
 - Ducks

- -- Skunk
- -- Possum

Point Sources

VPDES Permitted Point Sources

	5		5 ". 11	81.1	Receiving	
	Facility	County	Permit No.	Discharge	Stream	Model Segment
Sm	ith Midland Incorporated	Fauquier	VA0084298	0.0015 mgd	Licking Run	18
Sm	ith Midland Incorporated	Fauquier	VA0084298	0.0015 mgd	Licking Run	18
US	Marine Corps - Quantico	Prince William	VA0028371	0.04 mgd	Cedar Run	4
	Residence	Prince William	VAG406075	Less than 1,000 gpd	Cedar Run	1
	Residence	Prince William	VAG406089	Less than 1,000 gpd	Cedar Run	10
	Residence	Prince William	VAG406090	Less than 1,000 gpd	Cedar Run	1
	Residence	Prince William	VAG406091	Less than 1,000 gpd	Cedar Run	10
	Residence	Prince William	VAG406108	Less than 1,000 gpd	Slate Run	1
	Residence	Prince William	VAG406126	Less than 1,000 gpd	Slate Run	1
	Residence	Fauquier	VAG406188	Less than 1,000 gpd	Mill Run	16
	Residence	Fauquier	VAG406192	Less than 1,000 gpd	Mill Run	16
	Residence	Prince William	VAG406210	Less than 1,000 gpd	Slate Run	1
	Residence	Prince William	VAG406267	Less than 1,000 gpd	Cedar Run	10
	CAFO	Fauquier	VAG130007	Less than 1,000 gpd	Licking Run	18
	CAFO	Fauquier	VAG130008	Less than 1,000 gpd		6
	CAFO	Fauquier	VAG130023	Less than 1,000 gpd		14

Septic Systems

Failing Septic Systems

85 Failing Systems Watershed Wide

20

Sub-basin	Housing Units	Fail Septic
1	846	8
2	224	2
3	1168	12
4	47	0
5	7	0
6	127	6
7	118	12
8	1	0
9	48	0
10	342	7
11	0	0
12	0	0
13	18	0
14	656	7
15	64	1
16	3983	20
17	514	5
18	218	2
19	42	2
20	0	0

Pet Estimates

- Developed on estimates from:
 - 2000 US Census Block Group data
 - 0.534 dogs per household¹
 - 0.598 cats per household¹
 - TAC Recommendation 1.1 dogs Rural Sub-basins
 - Avg. Fecal Coliform Production:
 - 4.50e+09 bacteria/capita/day

1. American Veterinary Medical Association, 2002

Lifestock Estimates

- Based on 1997 Agricultural Census
- Applied equivalent percentage to Agricultural Census to develop initial livestock estimates for Cedar Run study area
- Adjusted sub-basin numbers upon consultation with TAC members

Livestock Estimates

	1997 County Wide Census	Cedar Run Estimates
Milk Cows	29,504	2,715
Beef Cows	15,540	1,930
Steers and Heifers	13,925	3,361
Horses and Ponies	4,195	1,066
Sheeps and Lambs	1,650	283
Poultry	1,588	283
Hogs and Pigs	461	204
Goats	176	84
Mules, burros, and donkeys	70	13

Milk Cow Estimates

2,715 Dairy Cows Watershed Wide

Sub-basin	Milk Cows
1	250
2	0
3	0
4	0
5	0
6	540
7	415
8	0
9	0
10	335
11	0
12	0
13	0
14	575
15	0
16	0
17	0
18	600
19	0
20	0

Beef Cow Estimates

Sub-basin Cows 1 150 2 75 3 150 4 50 5 0 6 0 7 125 8 0 9 50 10 200 11 0 12 0 13 0 14 600 15 30 16 304 17 150 18 25 19 25 20 0		Beef
2 75 3 150 4 50 5 0 6 0 7 125 8 0 9 50 10 200 11 0 12 0 13 0 14 600 15 30 16 304 17 150 18 25 19 25	Sub-basin	Cows
3 150 4 50 5 0 6 0 7 125 8 0 9 50 10 200 11 0 12 0 13 0 14 600 15 30 16 304 17 150 18 25	1	150
4 50 5 0 6 0 7 125 8 0 9 50 10 200 11 0 12 0 13 0 14 600 15 30 16 304 17 150 18 25 19 25	2	75
5 0 6 0 7 125 8 0 9 50 10 200 11 0 12 0 13 0 14 600 15 30 16 304 17 150 18 25 19 25	3	150
6 0 7 125 8 0 9 50 10 200 11 0 12 0 13 0 14 600 15 30 16 304 17 150 18 25 19 25	4	50
7 125 8 0 9 50 10 200 11 0 12 0 13 0 14 600 15 30 16 304 17 150 18 25	5	0
8 0 9 50 10 200 11 0 12 0 13 0 14 600 15 30 16 304 17 150 18 25 19 25	6	0
9 50 10 200 11 0 12 0 13 0 14 600 15 30 16 304 17 150 18 25 19 25	7	125
10 200 11 0 12 0 13 0 14 600 15 30 16 304 17 150 18 25 19 25	8	0
11 0 12 0 13 0 14 600 15 30 16 304 17 150 18 25 19 25	9	50
12 0 13 0 14 600 15 30 16 304 17 150 18 25 19 25	10	200
13 0 14 600 15 30 16 304 17 150 18 25 19 25	11	0
14 600 15 30 16 304 17 150 18 25 19 25	12	0
15 30 16 304 17 150 18 25 19 25	13	0
16 304 17 150 18 25 19 25	14	600
17 150 18 25 19 25	15	30
18 25 19 25	16	304
19 25	17	150
	18	25
20 0	19	25
	20	0

Steer and Heffer Estimates

	Steers/
Sub-basin	Heffers
1	150
2	80
3	165
4	55
5	0
6	300
7	385
8	0
9	55
10	400
11	0
12	0
13	0
14	830
15	30
16	330
17	220
18	330
19	30
20	0

Horse and Pony Estimates

Sub-basin	Horse and Pony
1	83
2	23
3	325
4	15
5	0
6	38
7	38
8	0
9	8
10	150
11	0
12	0
13	0
14	174
15	8
16	98
17	45
18	53
19	8
20	0

Sheep and Lamb Estimates

Sub-basin	Sheep and Lamb
1	33
2	9
3	20
4	6
5	0
6	15
7	15
8	0
9	3
10	30
11	0
12	0
13	0
14	68
15	3
16	39
17	18
18	21
19	3
20	0

Poultry Estimates

283 Poultry Watershed Wide

Sub-basin	Poultry
1	31
2	9
3	31
4	6
5	0
6	14
7	14
8	0
9	3
10	29
11	0
12	0
13	0
14	66
15	3
16	37
17	17
18	20
19	3
20	0

Hog and Pig Estimates

204 Hogs and Pigs Watershed Wide

Sub-basin	Hog and Pig
1	9
2	2
3	50
4	2
5	0
6	4
7	4
8	0
9	1
10	8
11	0
12	0
13	0
14	100
15	1
16	11
17	5
18	6
19	1
20	0

Goat Estimates

Sub-basin	Goats
1	3
2	1
3	3
4	1
5	0
6	2
7	2
8	0
9	0
10	3
11	0
12	0
13	0
14	60
15	0
16	4
17	2
18	2
19	0
20	0

Dairy Cattle

Month	Hours Per Day in Confinement (Milk cows only)	Hours Per Day in Stream (All Cattle)	Hours Per Day in Pasture (Milk cows only)	Total Hours
January	9.6	0.05	14.4	24
February	9.6	0.05	14.4	24
March	9.6	0.5	13.9	24
April	7.2	0.6	16.2	24
May	7.2	0.77	16.03	24
June	7.2	1.0	15.8	24
July	7.2	1.0	15.8	24
August	7.2	1.0	15.8	24
September	7.2	0.77	16.03	24
October	7.2	0.6	16.2	24
November	9.6	0.5	13.9	24
December	9.6	0.05	14.4	24

Beef Cattle

	Hours Per Day in Stream	Hours Per Day in Pasture	Total
Month	(All Cattle)	(All Cattle)	Hours
January	0.05	23.95	24
February	0.05	23.95	24
March	0.5	23.5	24
April	0.6	23.4	24
May	0.77	23.23	24
June	1.0	23.0	24
July	1.0	23.0	24
August	1.0	23.0	24
September	0.77	23.23	24
October	0.6	23.4	24
November	0.5	23.5	24
December	0.05	23.95	24

Wildlife and Habitat Estimates

Başed on Potential Habitats for Each Species:

Animal	Density	Habitat
Deer	0.084 / acre	Forest, pasture, cropland, pervious urban
Raccoon	0.070 / acre	Within 0 to 600 feet from continuous stream
Muskrat	2.750 / acre	Within 0 to 66 feet from continuous stream
Beaver	4.800 / acre	Continuous streams
Turkey	0.010 / acre	Forest
Goose	0.020 / acre	Within 0 to 66 feet from continuous stream
Duck	0.008 / acre	Within 0 to 66 feet from continuous stream

Raccoon Habitat

Wildlife Estimates

Raccoon

Beaver

Deer

Turkey

Muskrat

Goose (Migratory)

Duck (Migratory)

Waterfowl (Urban)

Cedar Run Estimates

2,937

420

1,936

599

13,133

96

38

10,709

Raccoon Estimates 2,937 Raccoons Watershed Wide Within 0 to 600 feet from continuous stream

Beaver Estimates

Turkey Estimates 599 Turkeys Watershed Wide: Land Use: Forest

Muskrat Estimates

Duck Estimates 38 Ducks Watershed Wide 6

DEQ Fecal Monitoring

Next Steps

Reallocate Animal and Livestock Loads

 Develop Monthly Land and Stream Loads

Calibrate WQ model component

Develop Scenarios to meet WQ Criteria

Finally.....The End